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them to be in good agreement with existing analytical large-Nf calculations.
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1. Introduction

The 3d four-fermion models are among the simplest relativistic quantum field theories of

interacting fermions. There are several motivations for studying such models. Dynam-

ical breaking of chiral symmetry occurs at strong enough interaction coupling g2
c . The

chirally broken phase is separated from the chirally symmetric phase by a second order

phase transition at the critical coupling. Even though these models are not perturba-

tively renormalizable, it has been shown that the 1/Nf expansion about the fixed point

g2
c is exactly renormalizable [1]. In addition, four-fermion models are ideal laboratories for

studying continuum phase transitions in the presence of massless fermions. Hence, they de-

fine new universality classes that are quantitatively different from the ferromagnetic phase

transitions in bosonic O(N) Heisenberg spin models. Furthermore, in the framework of

1/Nf expansion [2], it has been shown that the universality class of the d-dimensional

four-fermion models, where d is between two and four, is the same as the universality class

of the Higgs-Yukawa model with the same chiral symmetry. Understanding the proper-

ties of the continuum phase transition, which separates the chirally symmetric from the

chirally broken phase, requires non-perturbative techniques such as the large-Nf expan-

sion [1, 3 – 10], exact renormalization group equations [11, 12], and lattice Monte Carlo

simulations [4, 13, 14].

Given that 3d four-fermion models incorporate certain important features of QCD,

they have been used recently as model field theories to study the properties of the strong

interaction at non-zero temperature and non-zero quark number density [15]. In addition,

there may be applications of four-fermion models to high-Tc superconductivity [16], for

instance in describing non-Fermi liquid behavior in the normal phase [17]. More recently,

it was proposed that the Hubbard model on a honeycomb lattice relevant to the newly dis-

covered graphene sheets, has a transition described by the three-dimensional Z2-symmetric

four-fermion model [18].

In this paper, we study numerically the critical properties of the 3d four-fermion models

that exhibit the three different Z2, abelian U(1), and non-abelian SU(2) × SU(2) chiral
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symmetries. In our simulations, we fixed the number of fermion flavors to Nf = 4. Our

simulations are the first accurate finite size scaling (FSS) studies of the U(1) and SU(2)×

SU(2) models that allow us to detect next-to-leading order corrections on the values of the

critical exponents and to compare them with existing analytical large-Nf predictions [5 –

10]. Our results from the Z2 model simulations are also in good agreement with existing

large-Nf predictions as are other accurate Monte Carlo results with Nf = 2 [13].

2. Models and observables

In this section, we introduce the three different versions of the model and the observables

used to measure the critical exponents of the continuous phase transitions. In the litera-

ture, the models are often called the Gross-Neveu models and their continuum space-time

lagrangians (we work in Euclidean space) are as follows:

LA = Ψ̄i(∂/ + m)Ψi −
g2

2Nf
(Ψ̄iΨi)

2 , (2.1)

LB = Ψ̄i(∂/ + m)Ψi −
g2

2Nf
[(Ψ̄iΨi)

2 − (Ψ̄iγ5Ψi)
2] , (2.2)

LC = Ψ̄i(∂/ + m)Ψi −
g2

2

[

(Ψ̄iΨi)
2 − (Ψ̄iγ5~τΨi)

2
]

. (2.3)

We treat Ψi, Ψ̄i as four-component Dirac spinors and the index i runs over Nf fermion

species. It can be easily shown that in the chiral limit m → 0, LA has a Z2, LB a U(1),

and LC an SU(2) × SU(2) chiral symmetry.

For analytical and computational purposes, it is useful to introduce auxiliary fields σ

and πi. Hence, the bosonized lagrangians become quadratic in Ψi:

LA = Ψ̄i(∂/ + m + σ)Ψi +
Nf

2g2
σ2 , (2.4)

LB = Ψ̄i(∂/ + m + σ + iγ5π)Ψi +
Nf

2g2
(σ2 + π2) , (2.5)

LC = Ψi (∂/ + m + σ + iγ5~π · ~τ) Ψi +
Nc

2g2

(

σ2 + ~π · ~π
)

. (2.6)

For sufficiently strong coupling g2 > g2
c the models exhibit spontaneous symmetry breaking

implying dynamical generation of a fermion mass. The pion fields πi become the associated

Goldstone bosons.

We used the staggered fermion discretization with the auxiliary fields living on the

dual lattice sites to formulate the models in their bosonized form on the lattice. For each

case, we used the hybrid Monte Carlo algorithm with Nf = 4 fermion flavors to perform

numerical simulations exactly. The Monte Carlo procedure was optimized by choosing

the microcanonical trajectory length at random from a Poisson distribution with mean

value equal to 1.0. This method of optimization which guarantees ergodicity was found to

decrease the autocorrelations in the data significantly [19]. Details concerning the lattice

actions and the numerical algorithm can be found in [4, 20, 21].
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We work in the chiral limit to study the chiral phase transition of the models. Hence, we

choose not to introduce a bare quark mass into the lattice action. Without the benefit of this

interaction, the direction of symmetry breaking changes over the course of the simulation

such that Σ ≡ 1
V

∑

x σ(x) and Πi ≡
1
V

∑

x πi(x) average to zero over the ensemble. It is in

this way that the absence of spontaneous symmetry breaking on a finite lattice is enforced.

Another option is to introduce an effective order parameter Φ equal to the magnitude of the

vector ~Φ ≡ (Σ, ~Π). In the thermodynamic limit, 〈Φ〉 is equal to the true order parameter

〈σ〉 extrapolated to zero quark mass.

We employ the finite size scaling (FSS) method [22], a well-established tool, to study

the critical behavior of the model on lattices available to us. The correlation length ξ on a

finite lattice is limited by the size of the system and consequently no true criticality can be

observed. The dependence of a given thermodynamic observable, A, on the size L of the

box is singular. According to the FSS hypothesis, in the large volume limit, A is given by:

A(t, L) = LρA/νQA(tL1/ν), (2.7)

where t ≡ (βc − β)/βc is the reduced temperature, ν is the exponent of the correlation

length, QA is a scaling function that is not singular at zero argument, and ρA is the

critical exponent for the quantity A. Using eq. (2.7), one can determine such exponents by

measuring A for different values of L.

In the large L limit, the FSS scaling form of the effective order parameter 〈Φ〉 is given

by

〈Φ〉 = L−βm/νfσ(tL1/ν). (2.8)

A standard method to measure the inverse critical coupling βc ≡ 1/g2 for a second

order transition is to compute the Binder cumulant UB(β,L) [23], defined by

UB ≡ 1 −
1

3

〈Φ4〉

〈Φ2〉2
, (2.9)

for various system sizes. Near the critical coupling and on sufficiently large lattices, where

subleading corrections from the finite lattice size L are negligible, UB = fBL(tL1/ν). There-

fore, at βc, UB becomes independent of L. Deviations from this relation can be explained

by finite size confluent corrections. The leading L1/L dependence in the deviation of the

intersection point β∗ from the critical point βc is estimated by Binder [23] as

1

β∗(L)
=

1

βc
+

a

ln(L1/L)
. (2.10)

In our analysis we chose L to be the smallest lattice size L = 8 and hence L1 are the

remaining lattice sizes.

For the general O(n)-symmetric models, it can be easily shown [24] that as the lattice

volume tends to infinity in the weak coupling limit, Gaussian fluctuations around ~Φ = 0 lead

to UB → 2(n−1)/3n. For n = 1 (O(1) ≡ Z2 symmetry) this gives a zero reference point, for

n = 2 (O(2) ≡ U(1) symmetry) UB → 1/3, and for n = 4 (O(4) ≡ SU(2)×SU(2) symmetry)

UB → 1/2. In the chirally broken phase UB → 2/3 for all n in the thermodynamic limit.
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Another quantity of interest is the susceptibility χ that is given, in the static limit of

the fluctuation-dissipation theorem, by

χ = lim
L→∞

V [〈~Φ2〉 − 〈~Φ〉 · 〈~Φ〉], (2.11)

where V is the lattice volume. For finite systems, the true order parameter 〈~Φ〉 vanishes

and for β ≥ βc the susceptibility is given by:

χ = V 〈Φ2〉. (2.12)

This observable should scale at criticality like

χ = Lγ/νfχ(tL1/ν). (2.13)

Furthermore, the logarithmic derivatives of 〈Φ〉 can give estimates for the critical

exponent ν. It can be easily shown that

D ≡
∂

∂β
ln〈Φ〉 =

[

〈ΦSb〉

〈Φ〉
− 〈Sb〉

]

, (2.14)

where Sb is the bosonic part of the lattice action that is multiplied by the coupling β. D

has a scaling relation

D = L1/νfD(tL1/ν). (2.15)

We used the histogram reweighting method [25] to perform our study most effectively.

This enabled us to calculate the observables in a region of couplings around the simulation

coupling. We utilized this technique efficiently by performing simulations at slightly dif-

ferent couplings βi close to the critical coupling βc. We also employed the jacknife method

to estimate the statistical errors on the various observables reliably. This method accounts

for correlations in the raw data set.

3. Results

In this section we present the results of the data analysis for the three different models. In

all three cases, the fermion species number is fixed at Nf = 4. An accurate determination

of the critical exponents requires a precise determination of the critical coupling. We

calculated the critical couplings by using the Binder cumulant technique described in the

previous section. For different lattice sizes, the curves UB = UB(β) should intersect at

β = βc up to finite size corrections that are visible on the smaller lattices. We used the

histogram reweighting method to obtain the values of UB versus β. We show these values

for the Z2 model in figure 1.

We performed the simulations on the largest 403 lattice at a single value of the cou-

pling β = 0.835 and we generated approximately half a million configurations with av-

erage trajectory length equal to 1.0. We performed the simulations on the other lattices

(83, 123, 163, 223, 303) at all values β = 0.82, 0.83, 0.84, 0.85 with approximately half to one

million configurations for each β. It is clear that in the Z2 model, the UB curves intersect

at (βc, UB(βc)) = (0.835(1), 0.232(8)).
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L = 40
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L = 16
L = 12
L = 8

β
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Figure 1: Binder cumulant vs. β for different lattice sizes; Z2 model.

L = 40
L = 22
L = 16
L = 12
L = 8

β

UB

0.870.8650.860.8550.850.8450.840.8350.83

0.54

0.52

0.5

0.48

0.46

0.44

0.42

0.4

Figure 2: Binder cumulant vs. β for different lattice sizes; U(1) model.

As expected, the situation is somewhat different in the U(1) model. In this model

infrared fluctuations are stronger than in the discrete symmetry model. As a result, finite

size effects near the critical coupling are larger for U(1) than for Z2. We performed the

simulations for the U(1) model on the 403 lattices at all values β = 0.830, 0.835, 0.840,

0.845, 0.850, 0.86, whereas on the smaller lattices at all values β = 0.83, . . . , 0.86 and in

steps of 0.01. The data set generated on 303 at β = 0.850 was corrupted and it was not

included in the analysis. Approximately 6 × 105 - 1.3 × 106 configurations were generated

at each β. We show the values of UB versus β in figure 2. The leading L1/L finite size

corrections are taken into consideration by using eq. (2.10). We plot (1/ln(L1/L), 1/β∗)

for L = 8 in figure 3. We computed the errors for 1/β∗ from the jacknife errors for
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U(1)
SU(2) × SU(2)

1
ln(L1/L)

1
β∗

2.521.510.50

1.3

1.25

1.2

1.15

1.1

1.05

1

Figure 3: The intersection of UB(L) and UB(L1) for L = 8 vs. ln(L1/L).

L = 40
L = 30
L = 22
L = 16
L = 12
L = 8

β

UB

1.021.0110.990.980.970.960.950.940.93

0.62

0.6

0.58

0.56

0.54

0.52

0.5

Figure 4: Binder cumulant vs. β for different lattice sizes; SU(2) × SU(2) model.

UB(β). The extrapolation of 1
β∗(L) to the point 1/ ln(L1/L) = 0 gives βc = 0.853(2) and

UB(βc) = 0.424(8) on the 403 lattice.

We performed an analysis for the UB data for SU(2) × SU(2) similar to the one for

the U(1) model. In this case, we performed simulations at β = 0.92, . . . , 1.00 in steps

of 0.02 for the 83, 123, 163, 223, 303 lattices and at β = 0.94, . . . , 0.98 in steps of 0.01 on

the largest 403 lattice. The curves UB versus β obtained from histogram reweighting at

two consecutive values of β did not intersect. Therefore, to obtain the intersection we

used a linear approximation in the middle region between two curves. The values of UB

on different lattices near βc are shown in figure 4 and the extrapolation of 1/β∗ to the

point 1/ln(L1/L) = 0 are shown in figure 3. We extracted from this analysis the values

βc = 0.960(3) and U(βc) = 0.544(7) on the largest 403 lattice.
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SU(2) × SU(2)
U(1)

Z2

L

〈Φ〉

10010

1

0.1

0.01

Figure 5: Effective order parameter 〈Φ〉 as a function of the lattice size L for all three models.

SU(2) × SU(2)
U(1)
Z2

L

χ

10010

1000

100

10

1

Figure 6: Susceptibility χ as a function of the lattice size L for all three models.

Next, we calculated the exponent ratios βm/ν for the three models by fitting to eq. (2.8)

the values of 〈Φ〉 at βc obtained on different lattice sizes. After fitting the data obtained

on all lattice sizes we get βm/ν = 0.927(15) for Z2, βm/ν = 0.955(20) for U(1), and

βm/ν = 1.04(2) for SU(2) × SU(2). These values of βm/ν take into consideration the

statistical error in βc. In an effort to check to what extend our results are affected by

possible small volume effects we repeated the analysis without including the smallest lattice.

Our results, summarized in table 1 show that any finite volume systematic effects are

smaller than the statistical errors. Another analysis where the 123 data were excluded

confirmed this conclusion. The data and the fitted functions (for L = 12, . . . 40) for the

three models are shown in figure 5.

Similarly, we obtained the exponent ratios γ/ν by fitting the data for the susceptibility
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Figure 7: Logarithmic derivarive D of the order parameter as a function of the lattice size L for

all three models.

χ (eq. (2.12)) at βc to its FSS relation eq. (2.13). We present our results in table 2 together

with analytical predictions obtained from large-Nf calcultations to order 1/N2
f [6, 8]. It

is clear that our numerical results are in good agreement with the analytical predictions.

Furthermore, the results we got after omitting the smallest 83 volume show that any finite

size systematic effects are within the statistical errors. The data and the fitted functions

(for L = 12, . . . , 40) for the three models are shown in figure 6.

We used the logarithmic derivative D, defined in eq. (2.14), to calculate the exponent

ν. According to eq. (2.15), at βc, D ∼ L1/ν . We present the values of ν for each model

in table 3 together with the respective values obtained from large-Nf calculations to order

1/N2
f [7, 9, 10]. As in the γ/ν case, the results obtained from our simulations are in good

agreement with the analytical predictions. Like in the previous observables, in this case

also systematic small volume effects are within the statistical errors. The data and the

fitting functions (for L = 12, . . . , 40) for the three models at their critical couplings are

shown in figure 7.

Using our results for βm/ν and γ/ν, obtained from fits on all lattice sizes, we can check

whether the hyperscaling relation

βm

ν
+

1

2

γ

ν
−

d

2
= 0 (3.1)

is satisfied. We find that for all three different models the left hand side of eq. (3.1) is

consistent with the value zero with a statistical uncertainty of 3-4%.

4. Conclusions

We presented results from Monte Carlo simulations of 3d four-fermion models with Z2,

U(1), and SU(2) × SU(2) chiral symmetries. These models are among the simplest rela-

tivistic field theories of interacting fermions, and therefore are benchmarks for studying
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Z2 U(1) SU(2) × SU(2)

simulations L = 8, . . . , 40 0.927(15) 0.955(20) 1.04(2)

simulations L = 12, . . . , 40 0.917(20) 0.952(25) 1.05(3)

Table 1: Values of βm/ν measured from our simulations.

Z2 U(1) SU(2) × SU(2)

simulations L = 8, . . . , 40 1.152(25) 1.09(3) 0.925(25)

simulations L = 12, . . . , 40 1.165(40) 1.09(4) 0.910(30)

large Nf [6, 8] 1.132 1.06 0.946

Table 2: Values of γ/ν measured from our simulations and from large-Nf calculations.

Z2 U(1) SU(2) × SU(2)

simulations L = 8, . . . , 40 0.98(2) 1.05(2) 1.14(3)

simulations L = 12, . . . , 40 0.99(2) 1.03(4) 1.16(5)

large Nf [7, 9, 10] 0.98 1.02 1.11

Table 3: Values ν measured from our simulations and from large-Nf calculations.

critical phenomena in the presence of massless fermions. They are also used as model field

theories to study the behavior of strong interaction under extreme conditions and have

applications in condensed matter systems. In all three cases, we performed simulations

with Nf = 4 fermion species. Analytical calculations predict small next-to-leading order

corrections for the critical exponents of the second order phase transitions of these models

at this intermediate value of Nf . We detected these corrections in our simulations by em-

ploying standard finite size scaling techniques and we found them to be in good agreement

with large-Nf expansions up to O(1/N2
f ) [6 – 10]. Our results improve significantly previ-

ous numerical studies of 3d four-fermion models. Future work with much better statistics

on a variety of lattices including larger sizes than the ones used in this work will allow for

the detection of corrections to scaling effects and possible deviations from the O(1/N2
f )

analytical calculations. Also simulations with Nf = 1 will be particularly instructive, as

for such a small Nf large-Nf calculations cannot be applied.
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